
The jCoderZ.org Project
Java Coding Guidelines

Version 1.0

The jCoderZ.org Project Java Coding Guidelines: Version
1.0
Copyright © 2006, 2007, 2008 jcoderz.org

Important Notice

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
• Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.
• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-

ing disclaimer in the documentation and/or other materials provided with the distribution.
• Neither the name of the jCoderZ.org Project nor the names of its contributors may be used to endorse or pro-

mote products derived from this software without specific prior written permission.

THIS MATERIAL IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Parts of this Document are Adapted with permission from CODE CONVENTIONS FOR THE JAVATM PRO-
GRAMMING LANGUAGE. Copyright 1995-1999 Sun Microsysytems, Inc. All rights reserved.

Document Control. This document is issued by jCoderZ.org Any queries, or suggestions for improvement to
this document should be addressed at our web page http://www.joderz.org/.

iv

Table of Contents
1. Introduction .. 1

1.1. Why Have Code Conventions ... 1
1.2. Acknowledgements .. 1
1.3. Document content ... 1

2. Source File Structure .. 2
2.1. File Header ... 2
2.2. Package and Import statements ... 2
2.3. Class and Interface Declarations .. 3

3. Comments ... 4
3.1. Implementation Comments ... 4
3.2. Documentation Comments ... 4

4. Statements .. 5
4.1. Compound Statements .. 5
4.2. return Statements .. 5
4.3. if, if-else, if else-if else Statements .. 5
4.4. for Statements ... 5
4.5. while Statements ... 6
4.6. do-while Statements .. 6
4.7. switch Statements ... 6
4.8. try-catch Statements .. 6

5. Whitespace and Indentation .. 8
5.1. Indention ... 8
5.2. Blank Lines ... 8
5.3. Blank Spaces .. 9

6. Naming Conventions .. 10
6.1. Packages .. 10
6.2. Classes ... 10
6.3. Interfaces .. 10
6.4. Methods .. 10
6.5. Variables ... 11
6.6. Constants .. 11

7. Programming Practices ... 12
7.1. Referring to Class Variables and Methods 12
7.2. Constants .. 12
7.3. Parenthesis ... 12
7.4. Returning Values ... 12
7.5. Special Comments ... 12
7.6. Initialization ... 12
7.7. Size Contraints .. 12
7.8. Empty Blocks .. 12

8. Java Source File Examples ... 13
A. Appendix ... 17

1

Chapter 1. Introduction
Science is what we understand well enough to explain to a
computer. Art is everything else we do.

—Donald Knuth, Foreward to the book A=B

1.1. Why Have Code Conventions

Code conventions are important to programmers for a number of reasons:
• 80% of the lifetime cost of a piece of software goes to maintenance.
• Hardly any software is maintained for its whole life by the original author.
• Code conventions improve the readability of the software, allowing engineers

to understand new code more quickly and thoroughly.
• If you ship your source code as a product, you need to make sure it is as well

packaged and clean as any other product you create.

For the conventions to work, every person at jCoderZ.org writing software must
conform to the code conventions.

1.2. Acknowledgements

This document is the result of the merger of 2 sources:
• Java Code Conventions from Sun. The original can be found at http://

java.sun.com/docs/codeconv/ [JavaCodeConv].
• The former code conventions we where used to adhere.

The document is maintained by the jCoderZ.org Project. Comments can be sent
the web site at http://www.jcoderz.org/.

1.3. Document content

This document contains a list of rules ordered by different aspects. In general all
given rules must be respected in order to make the code more readable.

If conforming to these rules leads to code that is harder to read and understand,
you might break these rules and choose another style for small parts of your
code. You must prefer open standards when using another convention and doc-
ument the convention and the reason for breaking these rules.

The inability to conform to this guideline might be a strong indication that the
given code approach could be enhanced. To avoid major rework tasks, please
get in contact with any member of the jCoderZ.org Project in order to get assis-
tance for the given coding problem.

If you are faced with a problem that is not covered by any of the rules in this
document, get in contact with the jCoderZ.org Project or use the referred docu-
ment to identify a solution.

The Book Writing Robust Java Code [Ambler00] is a reading recommendation
and gives a good introduction for novice and advanced software engineers.

Conformance to this coding guideline will automatically be checked by Check-
style. If non-conforming code is detected, the code author will be contacted and
asked to enhance his source code.

http://java.sun.com/docs/codeconv/
http://java.sun.com/docs/codeconv/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

2

Chapter 2. Source File Structure
A file consists of sections that should be separated by blank lines and an option-
al comment identifying each section. Files longer than 2000 lines are cumber-
some and should be avoided.

Each Java source file must contain a single toplevel class or interface.

Java source files must have the following ordering:
• File Header
• Package and Import statements
• Class and interface declarations

2.1. File Header

All source files must begin with the following header:

/*
 * $Id: SampleSnippets.java 1011 2008-06-16 17:57:36Z amandel $
 *
 * Copyright 2006, The jCoderZ.org Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials
 * provided with the distribution.
 * * Neither the name of the jCoderZ.org Project nor the names of
 * its contributors may be used to endorse or promote products
 * derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

You don't have to bother with filling in Id into this header as they are automati-
cally filled via CVS/SVN functionality.

2.2. Package and Import statements

The package declaration must follow immediately after the file header.

For import statements the “single-type import statements” must always be used:

import java.io.IOException;
import java.io.Serializable;

Source File Structure

3

Using single-type imports is quite useful and makes it easy for the reader to de-
termine the package of a particular type. Do not use “On-demand import state-
ments”:

import java.util.*; // DON'T

Import statements should be lexicographically sorted and grouped according to
the upper level packages (Recommendation).

2.3. Class and Interface Declarations

The following table describes the parts of a class or interface declaration, in the
order that they should appear:

Table 2.1. Class/Interface parts order

No. Part of Class/Interface Declaration Notes

1 Class/interface documentation com-
ment (/**...*/)

See Documentation Comments for
information on what should be in
this comment.

2 Class or interface statement

3 Class/interface implementation
comment (/*...*/), if necessary.

This comment should contain any
class-wide or interface-wide infor-
mation that wasn't appropriate for
the class/interface documentation
comment.

4 Class (static) variables a

5 Instance variables a

6 Constructors a

7 Methods a
aOrder is always from public to most private: public, protected, then package level (no access modi-
fier), private.

4

Chapter 3. Comments
3.1. Implementation Comments

Implementation comments are those which are delimited by /*...*/ and //.
They are means for commenting out code or for adding information about the
particular implementation. Doc comments are meant to describe the specifica-
tion of the code, from an implementation-independent perspective. It is meant
for developers who might not necessarily have the source code at hand.

Comments should be used to give an overview of the code and provide addi-
tional information that are not readily available in the code itself. Comments
should contain only information that are relevant to reading and understanding
the program. For example, information about how to build the corresponding
package or in what directory it resides should not be stated as a comment.

Discussions of non-trivial or non-obvious design decisions are appropriate, but
avoid duplicating information that is present and clearly visible in the code. Re-
dundant comments get outdated too easily. In general, avoid any comments that
are likely to get outdated as the code evolves.

Note: A high frequency of comments sometimes reflects poor quality of code.
When you feel compelled to add a comment, consider rewriting the code to
make it clearer. Comments must not be enclosed in large boxes drawn with as-
terisks or other characters.

3.2. Documentation Comments

Doc comments describe Java classes, interfaces, constructors, methods, and
fields. Each doc comment is set inside the comment delimiters /**...*/.

/**
 * The Example class provides ...
 * @author Stephen Mohr
 * @author Oliver Griffin
 */
public class ExampleClass
{
 // ...
}

The first line of doc comments (/**) for classes and interfaces is not indented.
Subsequent doc comment lines each have 1 space of indentation (to vertically
align the asterisks). Members, including constructors, have three spaces for the
first doc comment line and four spaces thereafter. Doc comments should not be
positioned inside a method or constructor definition block, because Java asso-
ciates documentation comments with the first declaration after the comment.

Doc comments for classes or interfaces must include the @author tag. Only
one name per @author tag in the form @author firstname lastname. Devel-
opers making major changes on the file must add their name. For methods or
constructors the @param, @return, @throws, @see tag must be included as
needed. Do not use the @exception tag. A package.html must be added for
each new package.

For further details, see How to Write Doc Comments for Javadoc which in-
cludes information on the doc comment tags and for details about doc com-
ments and javadoc, see the Javadoc Tool Home Page.

http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
http://java.sun.com/j2se/javadoc/

5

Chapter 4. Statements
4.1. Compound Statements

Compound statements are statements that contain lists of statements enclosed
in braces { statements }. See the following sections for examples.
• The enclosed statements must be indented one more level than the com-

pound statement.
• The opening and the closing brace must begin in a new line and be indented

to the beginning of the compound statement.
• Braces are used around all statements, even single statements, when they

are part of a control structure, such as an if-else or for statement. This makes
it easier to add statements without accidentally introducing bugs due to forget-
ting to add braces.

4.2. return Statements
A return statement with a value should not use parentheses unless they make
the return value more obvious/better readable in some way.

return list.size();
// OR
return (size != 0 ? size : DEFAULT_SIZE);

4.3. if, if-else, if else-if else Statements
if (i > 0)
{
 // ...
}

if (i > 0)
{
 // ...
}
else
{
 // ...
}

if (i > 0)
{
 // ...
}
else if (i == 0)
{
 // ...
}
else
{
 // ...
}

4.4. for Statements
for (int j = 0; j < SIZE; j++)
{
 // ...
}

When using the comma operator in the initialization or update clause of a for
statement, don't use more than three variables. If needed, use separate state-

Statements

6

ments before the for loop (for the initialization clause) or at the end of the loop
(for the update clause).

4.5. while Statements
while (i > 0)
{
 // ...
}

Don't do any operations within the control element:

while (--i > 0); // DON'T

4.6. do-while Statements
do
{
 // ...
}
while (i > 0);

4.7. switch Statements
switch (i)
{
 case HttpServletResponse.SC_ACCEPTED:
 // ...
 /* falls through */
 case HttpServletResponse.SC_BAD_REQUEST:
 // ...
 break;
 case HttpServletResponse.SC_CONTINUE:
 // ...
 break;
 default:
 throw new RuntimeException("Unexpected condition.");
 // no break here because position is unreachable!
}

Every time a case falls through (doesn't include a break statement), add a com-
ment where the break statement would normally be to indicate that the fall-
through is happening intentionally. This is shown in the preceding code example
with the /* falls through */ comment.

Every switch statement must include a default case. The break in the de-
fault case is redundant, but it prevents a fall-through error if later another
case is added. The default case should anyway always be the last to appear.

4.8. try-catch Statements
try
{
 // ...
}
catch (IllegalArgumentException ex)
{
 // ...
}

try
{
 // ...
}

Statements

7

catch (IllegalArgumentException ex)
{
 // ...
}
finally
{
 // ...
}

try
{
 // ...
}
finally
{
 // ...
}

8

Chapter 5. Whitespace and
Indentation
5.1. Indention

Four spaces should be used as the unit of indentation. Never use tabs. All in-
dentation must be done using space characters.

Do not write lines longer than 80 characters, since they are not handled well by
many terminals and tools.

Note: Examples for use in documentation should have a shorter line length (no
more than 70 characters).

Break always before the keywords extends, implements and throws and in-
dent a additional unit of indention (4 spaces).

public class IndentionSample
 extends SampleSnippets
 implements Serializable, Cloneable, Comparable
{
 /**
 *
 */
 public void doSomething (int length)
 throws IOException
 // ...

When an expression will not fit on a single line, break it according to these gen-
eral principles:
• Break field and variable initializers before the '=' operator.
• Break after opening parenthesis, comma or dot.
• Break before an operator or closing parenthesis.
• Prefer higher-level breaks to lower-level breaks.
• Base indent is two additional units of indention (8 spaces). Deeper nested

expressions are further indented according to their nesting level. (12, 16, ...
spaces)

final SimpleBusinessResultException e
 = new SimpleBusinessResultException(
 ResultCode.SPLIT_AUTHORIZATION_SPLIT_INDEX_UNEXPECTED);

If the above rules lead to confusing code or to code that is squished up against
the right margin, just indent 8 spaces instead.

If your code is so deeply nested, splitting the code into several methods might
be a good idea. Also if your statement is much too long to fit in a line you might
think about rewriting the code using several statements.

5.2. Blank Lines

Blank lines improve readability by setting off sections of code that are logically
related.

One blank line should always be used in the following circumstances:
• Between methods
• Before a block or single-line comment

Whitespace and Indentation

9

• Between logical sections inside a method to improve readability
• Between groups of import statements

Two blank lines should always be used between sections of a source file.

5.3. Blank Spaces

Blank spaces must be used in the following circumstances:
• A keyword followed by a parenthesis must be separated by a space.

while (i > 0)
{
 // ...
}

Note that a blank space must not be used between a method name and its
opening parenthesis, except at the method declaration (see below). This
helps to distinguish keywords from method calls.

• A blank space must appear after commas in argument lists.
• All binary operators except . must be separated from their operands by

spaces. Blank spaces must not separate unary operators such as unary mi-
nus, increment ++, and decrement -- from their operands.

int d = 1;
b = (a + b) / (c * ++d);
System.out.println("c=" + c + "\n");

• The expressions in a for statement must be separated by blank spaces.

for (int j = 0; j < SIZE; j++)
{
 // ...
}

• Casts must be followed by a blank space.

final boolean result = aMethod((byte) a, (Object) x);
anotherMethod((int) (a + 1), ((int) (b + MAX_LOOPS)) + 1);

• Method/Constructor declarations. To allow easy searching for method or con-
structor declarations put a whitespace between the method name and the
opening paranthesis of the parameter list. When doing a method invocation,
do not put a whitespace between method name and paranthesis. This allows
to distinguish between method invocation and declaration.

private static void anotherMethod (int a, int b)
{
 // ...
}

10

Chapter 6. Naming Conventions
Naming conventions make programs more understandable by making them
easier to read. They can also give information about the function of the identifier
- for example, whether it's a constant, package, or class - which can be helpful
in understanding the code.

If acronyms or abbreviations are used in a name only the first letter might be
uppercase (except for Constants). So choose class HtmlGateway not class
HTMLGateway.

6.1. Packages
The prefix of a unique package name is always org.jcoderz. and must
match the regular expression ^org\.jcoderz(\.[a-z][a-z0-9]*)+$.

Subsequent components of the package name vary according to the teams own
internal naming conventions.

6.2. Classes
Class names should be nouns, in mixed case with the first letter of each inter-
nal word capitalized and must match the regular expression ^[A-Z][a-zA-
Z0-9]*$.

Try to keep your class names simple and descriptive. Use whole words - avoid
acronyms and abbreviations (unless the abbreviation is much more widely used
than the long form, such as URL or HTML), e.g. class Raster or class Im-
ageSprite.

6.3. Interfaces
Use nouns to name interfaces that act as service declaration:

public interface ActionListener
{
 void actionPerformed (EventObject event);
}

Use adjectives to name interfaces that act as descriptions of capabilities. Most
interfaces that describe capabilities use an adjective created by tacking an
“able” or “ible” suffix to onto the end of verb:

public interface Runnable
{
 void run ();
}

public interface Accessible
{
 Context getContext ();
}

Interface names must, like class names, have the first letter (of each noun) capi-
talized.

6.4. Methods
Methods should be verbs, in mixed case with the first letter lowercase, with the
first letter of each internal word capitalized: run(), runFast(), or getBack-
ground().

Naming Conventions

11

6.5. Variables

Variables are in mixed case with a lowercase first letter, internal words start with
capital letters. Variable names must not start with underscore _ or dollar sign $
characters.

Variable names should be short yet meaningful. The choice of a variable name
should be mnemonic - that is, designed to indicate to the casual observer the in-
tent of its use. One-character variable names must be avoided except for tem-
porary throwaway variables. Common names for temporary variables are i, j, k,
m, and n for integers; c, d, and e for characters.

Do not use local variable names that hide variables at higher levels.

The name of class members must start with a lowercase letter s and match the
regular expression ^s[A-Z][a-zA-Z0-9]*$. The name of natural members
must start with a lowercase m and match the regular expression ^m[A-Z][a-
zA-Z0-9]*$.

public class MemberSample
{
 private static int sClassAccessCounter = 0;
 private int mMemberAccessCounter = 0;

 // ...
}

Names of variables that refer to collections of objects should correspond to the
plural form of the semantic type contained in the collection. This enables a read-
er of the code to distinguish between variables representing multiple values
from those representing single values:

private Object[] mCustomers = new Object[MAX_CUSTOMERS];

void addCustomer (int index, Object customer)
{
 mCustomers[index] = customer;
}

6.6. Constants

The names of constants must be all uppercase with words separated by un-
derscores (_). Exception to this are the constants logger and serialVer-
sionUID.

static final int MIN_WIDTH = 4;
static final int MAX_WIDTH = 999;
static final int GET_THE_CPU = 1;
static final long serialVersionUID = -7064645359225861305L;
static final Logger logger
 = Logger.getLogger(SampleSnippets.class.getName());

12

Chapter 7. Programming Practices
7.1. Referring to Class Variables and Methods

Do not use an object to access a class (static) variable or method. Use a class
name instead.

classMethod();
ReferringSample.classMethod();
anObject.classMethod(); // DON'T

7.2. Constants

Numerical constants (literals) must not be coded directly (magic numbers), ex-
cept for -1, 0, and 1, which can appear in a for loop as counter values.

7.3. Parenthesis

It is generally a good idea to use parentheses liberally in expressions involving
mixed operators to avoid operator precedence problems. Even if the operator
precedence seems clear to you, it might not be to others. Do not assume that
other programmers know precedence as well as you do.

7.4. Returning Values

You should have only one exit point in a method. You must have a good expla-
nation if you use more than one return statement in a method.

7.5. Special Comments

Use TODO in a comment to flag something that is bogus but works. Use FIXME
to flag something that is bogus and broken.

7.6. Initialization

Initialize local variables where they are declared. The only reason not to initial-
ize a variable in its declaration is if the initial value depends on some computa-
tion that has to occur first.

7.7. Size Contraints

Methods are limited to 100 lines of code. Empty lines and single line comments
are ignored.

The number of arguments for an method or constructor must not exceed 7.

7.8. Empty Blocks

Intentionally empty block must contain a comment. Empty blocks that can/
should never be reached like empty catch or default block must throw a Run-
timeException.

13

Chapter 8. Java Source File Examples
The following example shows how to format a Java source file containing a sin-
gle public class. Interfaces are formatted similarly.

 1 /*
 2 * $Id: TransactionId.java 1011 2008-06-16 17:57:36Z amandel $
 3 *
 4 * Copyright 2006, The jCoderZ.org Project. All rights reserved.
 5 *
 6 * Redistribution and use in source and binary forms, with or without
 7 * modification, are permitted provided that the following conditions are
 8 * met:
 9 *
 10 * * Redistributions of source code must retain the above copyright
 11 * notice, this list of conditions and the following disclaimer.
 12 * * Redistributions in binary form must reproduce the above
 13 * copyright notice, this list of conditions and the following
 14 * disclaimer in the documentation and/or other materials
 15 * provided with the distribution.
 16 * * Neither the name of the jCoderZ.org Project nor the names of
 17 * its contributors may be used to endorse or promote products
 18 * derived from this software without specific prior written
 19 * permission.
 20 *
 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND
 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS
 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 28 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 29 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 30 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 31 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 32 */
 33 package org.jcoderz.guidelines.snippets;
 34
 35
 36 import java.io.File;
 37 import java.io.FileInputStream;
 38 import java.io.IOException;
 39 import java.io.Serializable;
 40
 41
 42 /**
 43 * This util class represents an Transaction Id with all
 44 * of its features and restrictions.
 45 * Instances of this class are immutable.
 46 *
 47 * @author SWAG
 48 */
 49 public final class TransactionId
 50 implements Comparable, Serializable
 51 {
 52 /** Name of this type. */
 53 public static final String TYPE_NAME = "TX_ID";
 54
 55 /** Bit mask used for hashcode generation. */
 56 private static final int NUMBER_OF_BITS_PER_INT = 32;
 57
 58 private static final int BUFFER_SIZE = 4096;
 59
 60 private static final int BUFFER_MULTIPLIER = 2;
 61
 62 private static final long serialVersionUID = -7064645359225861305L;
 63
 64 /** Holds the transaction id */

Java Source File Examples

14

 65 private final long mTransactionId;
 66
 67
 68 /**
 69 * Creates a new instance of TransactionId.
 70 *
 71 * @param transactionId the transaction to be represented by the
 72 * <code>TransactionId</code>.
 73 * @throws IllegalArgumentException if the long does not fit
 74 * into a transaction id.
 75 */
 76 private TransactionId (long transactionId)
 77 throws IllegalArgumentException
 78 {
 79 if (transactionId < 0)
 80 {
 81 throw new IllegalArgumentException(TYPE_NAME + " "
 82 + String.valueOf(transactionId)
 83 + "Value must be positive.");
 84 }
 85 mTransactionId = transactionId;
 86 }
 87
 88
 89 /**
 90 * Parses the string argument as a transaction id.
 91 *
 92 * @param s the <code>String</code> containing the transaction id.
 93 * @return the transaction id represented by the string argument.
 94 * @throws IllegalArgumentException if the string does not contain a
 95 * parseable transaction id.
 96 */
 97 public static TransactionId fromString (String s)
 98 throws IllegalArgumentException
 99 {
100 final TransactionId result;
101 try
102 {
103 result = new TransactionId(Long.parseLong(s));
104 }
105 catch (NumberFormatException ex)
106 {
107 final IllegalArgumentException iaex
108 = new IllegalArgumentException(
109 TYPE_NAME + " Failed to parse the value.");
110 iaex.initCause(ex);
111 throw iaex;
112 }
113 catch (NullPointerException ex)
114 {
115 final IllegalArgumentException iaex
116 = new IllegalArgumentException(
117 TYPE_NAME + " Value must not be null.");
118 iaex.initCause(ex);
119 throw iaex;
120 }
121 return result;
122 }
123
124 /**
125 * Returns a transaction id from the given long <code>l</code>.
126 *
127 * @param l the <code>long</code> containing the transaction id.
128 * @return the transaction id represented by the argument.
129 * @throws IllegalArgumentException if the long does not fit into a
130 * transaction id.
131 */
132 public static TransactionId fromLong (long l)
133 throws IllegalArgumentException
134 {
135 return new TransactionId(l);
136 }

Java Source File Examples

15

137
138 /**
139 * Returns the transaction id as String.
140 *
141 * @return the transaction id as String.
142 */
143 public String toString ()
144 {
145 return Long.toString(mTransactionId);
146 }
147
148 /**
149 * Returns the transaction id as long.
150 *
151 * @return the transaction id as long.
152 */
153 public long toLong ()
154 {
155 return mTransactionId;
156 }
157
158 /**
159 * Indicates whether some other object is "equal to" this one.
160 *
161 * @param obj the object to compare this <code>TransactionId</code>
162 * against.
163 * @return true if this object is the same as the obj argument; false
164 * otherwise.
165 */
166 public boolean equals (Object obj)
167 {
168 boolean result = false;
169
170 if (obj instanceof TransactionId)
171 {
172 result = (mTransactionId
173 == (((TransactionId) obj).mTransactionId));
174 }
175
176 return result;
177 }
178
179 /**
180 * Compare two transaction IDs.
181 * This implementation is consistent with {@link #equals(Object)}.
182 *
183 * @param o object with which to compare this TransactionId
184 * @return a result less than zero if this object is less than
185 * <code>o</code>, exactly zero if they are equal, and a result
186 * greater than zero otherwise.
187 */
188 public int compareTo (Object o)
189 {
190 final int result;
191 // Can't simply return the difference, because that difference
192 // might not fit in an int.
193 if (mTransactionId < ((TransactionId) o).mTransactionId)
194 {
195 result = -1;
196 }
197 else if (mTransactionId > ((TransactionId) o).mTransactionId)
198 {
199 result = 1;
200 }
201 else
202 {
203 result = 0;
204 }
205 return result;
206 }
207
208 /**

Java Source File Examples

16

209 * Compute hash code.
210 *
211 * @return hash code for this transaction ID
212 */
213 public int hashCode ()
214 {
215 return (int) (mTransactionId
216 ^ (mTransactionId >>> NUMBER_OF_BITS_PER_INT));
217 }
218
219 /**
220 * Helper function to read the full content of the file.
221 *
222 * @param file the file to read.
223 * @return the content of the given file as byte array.
224 * @throws IOException if a IOException occurs.
225 */
226 private static byte[] readFully (File file)
227 throws IOException
228 {
229 final FileInputStream in = new FileInputStream(file);
230 byte[] buffer = new byte[BUFFER_SIZE];
231 int read;
232 int pos = 0;
233
234 while ((read = in.read(buffer, pos, buffer.length - pos)) > 0)
235 {
236 pos += read;
237 if (pos == buffer.length)
238 {
239 byte[] newBuffer
240 = new byte[buffer.length * BUFFER_MULTIPLIER];
241
242 System.arraycopy(buffer, 0, newBuffer, 0, buffer.length);
243 buffer = newBuffer;
244 }
245 }
246
247 if (pos != buffer.length)
248 {
249 byte[] newBuffer = new byte[pos];
250
251 System.arraycopy(buffer, 0, newBuffer, 0, pos);
252 buffer = newBuffer;
253 }
254
255 return buffer;
256 }
257 }
258

17

Appendix A. Appendix

References
[Ambler00] Writing Robust Java Code. Scott W. Ambler. Copyright © 1998, 1999 AmbySoft

Inc.. http://www.ambysoft.com/javaCodingStandards.pdf .

[bloch01] Effective Java Programming Language. Joshua Bloch. Copyright © 2001 Addi-
son-Wesley Professional. Addison-Wesley Professional . 0201310058.

[JavadocHowTo] How to Write Doc Comments for the JavadocTM Tool. Copyright ©
2000 Sun Microsystems, Inc. http://java.sun.com/j2se/javadoc/writingdoccom-
ments/index.html .

[SunCodeConv] Code Conventions for the Java Programming Language. Copyright ©
1995, 2003 Sun Microsystems, Inc. http://java.sun.com/docs/codeconv/ .

[checkstyle] Checkstyle. http://checkstyle.sourceforge.net/ .

[pmd] PMD. http://pmd.sourceforge.net/ .

[findbugs] FindBugs - A Bug Pattern Detector for Java. http://www.cs.umd.edu/~pugh/ja-
va/bugs/ .

http://www.ambysoft.com/javaCodingStandards.pdf
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
http://java.sun.com/docs/codeconv/
http://checkstyle.sourceforge.net/
http://pmd.sourceforge.net/
http://www.cs.umd.edu/~pugh/java/bugs/
http://www.cs.umd.edu/~pugh/java/bugs/

	The jCoderZ.org Project Java Coding Guidelines
	Table of Contents
	Chapter 1. Introduction
	1.1. Why Have Code Conventions
	1.2. Acknowledgements
	1.3. Document content

	Chapter 2. Source File Structure
	2.1. File Header
	2.2. Package and Import statements
	2.3. Class and Interface Declarations

	Chapter 3. Comments
	3.1. Implementation Comments
	3.2. Documentation Comments

	Chapter 4. Statements
	4.1. Compound Statements
	4.2. return Statements
	4.3. if, if-else, if else-if else Statements
	4.4. for Statements
	4.5. while Statements
	4.6. do-while Statements
	4.7. switch Statements
	4.8. try-catch Statements

	Chapter 5. Whitespace and Indentation
	5.1. Indention
	5.2. Blank Lines
	5.3. Blank Spaces

	Chapter 6. Naming Conventions
	6.1. Packages
	6.2. Classes
	6.3. Interfaces
	6.4. Methods
	6.5. Variables
	6.6. Constants

	Chapter 7. Programming Practices
	7.1. Referring to Class Variables and Methods
	7.2. Constants
	7.3. Parenthesis
	7.4. Returning Values
	7.5. Special Comments
	7.6. Initialization
	7.7. Size Contraints
	7.8. Empty Blocks

	Chapter 8. Java Source File Examples
	Appendix A. Appendix
	References

